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The equilibrium dynamics in a homogeneous forced-dissipative f-plane shallow-water 
system is investigated through numerical simulations. In addition to classical two- 
dimensional turbulence, inertio-gravity waves also exist in this system. The dynamics 
is examined by decomposing the full flow field into a dynamically balanced potential- 
vortical component and a residual 'free' component. Here the potential-vortical 
component is defined as part of the flow that satisfies the gradient-wind balance 
equation and that contains all the linear potential vorticity of the system. The 
residual component is found to behave very nearly as linear inertio-gravity waves. 
The forcing employed is a mass and momentum source balanced so that only the 
large-scale potential-vortical component modes are directly excited. The dissipation 
is provided by a linear relaxation applied to the large scales and by an eighth-order 
linear hyperdiffusion. The statistical properties of the potential-vortical component 
in the fully developed flow were found to be very similar to those of classical 
two-dimensional turbulence. In particular, the energy spectrum of the potential- 
vortical component at scales smaller than the forcing is close to the - k-3 expected 
for a purely two-dimensional system. Detailed analysis shows that the downscale 
enstrophy cascade into any wavenumber is dominated by very elongated triads 
involving interactions with large scales. Although not directly forced, a substantial 
amount of energy is found in the inertio-gravity modes and interactions among 
inertio-gravity modes are principally responsible for transferring energy to the small 
scales. The contribution of the inertio-gravity modes to the flow leads to a shallow tail 
at the high-wavenumber end of the total energy spectrum. For parameters roughly 
appropriate for the midlatitude atmosphere (notably Rossby number - 0.5), the break 
between the roughly - k-3 regime and this shallower regime occurs at scales of a 
few hundred km. This is similar to the observed mesoscale regime in the atmosphere. 
The nonlinear interactions among the inertio-gravity modes are extremely broadband 
in spectral space. The implications of this result for the subgrid-scale closure in the 
shallow-water model are discussed. 

1. Introduction 
The study of homogeneous turbulence in two-dimensional, non-divergent flows 

has been an important area of fluid mechanics over the last quarter-century (e.g. 
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Kraichnan 1967; Fornberg 1977; Basdevant et al. 1981 ; McWilliams 1984; Legras, 
Santangelo & Benzi 1988; Maltrud & Vallis 1991). Part of the motivation for these 
studies has been the belief that the pure two-dimensional model represents an ideal- 
ized, but still useful, approximation to flow in the atmosphere (e.g. Lilly 1972). The 
fact that the inviscid, unforced two-dimensional system conserves enstrophy is known 
to inhibit the transfer of energy to small scales, leading to behaviour very different 
from that exhibited by three-dimensional homogeneous turbulence. Kraichnan (1967) 
used theoretical arguments to show that there are two possible inertial ranges for 
non-divergent homogeneous turbulence : one characterized by a downscale enstrophy 
cascade (with predicted wavenumber energy spectrum proportional to - k3), and 
one characterized by an upscale energy cascade (with predicted energy spectrum pro- 
portional to - k-5/3) .  Simulations of the equilibrium spectrum in two-dimensional 
numerical models have tended to show results in at least qualitative agreement with 
Kraichnan’s theoretical prediction. In particular, at scales smaller than that of the 
forcing, the simulated energy spectra very roughly approximate - k-3, although results 
can depend on the precise characteristics of the forcing and dissipation imposed. 

The problem of homogeneous turbulence in a divergent shallow-water model has 
also been studied recently. This system is of interest as the simplest generalization of 
the purely two-dimensional model, and for its possible geophysical relevance. In the 
shallow-water system the enstrophy conservation constraint is relaxed, allowing the 
possibility of substantial energy transfer to small scales. 

An important concept that arises in the analysis and interpretation of the shallow- 
water model is the division of the flow into a slowly varying ‘balanced’ component 
characterized by a diagnostic relation between the pressure and velocity fields, and a 
high-frequency ‘free’ component. In the limit of very weak flow the slow component 
is geostrophic motion, while the high-frequency motions are simply linear inertio- 
gravity waves. The separation of balanced and free modes in stronger flows is not so 
straightforward. This issue of defining the balanced and free components is central 
to many aspects of geophysical fluid dynamics, and the shallow-water model allows 
this problem to be investigated in its simplest context. 

Warn ( 1986) considered the statistical mechanics of the extremely idealized case 
of an unforced inviscid rotating shallow-water system. He argued that, even if the 
initial state is nearly in geostrophic balance, the final statistical equilibrium must 
be characterized by an equipartition of energy among all modes, including small- 
scale, high-frequency inertio-gravity waves. Warn used this result to speculate that 
in the (geophysically relevant) forced-dissipative system geostrophic motions should 
be similarly unstable, and that the fully developed flow should include significant 
contributions from the inertio-gravity waves. 

Farge & Sadourny (1989, hereafter FS) investigated similar issues through numer- 
ical simulation of unforced initial value problems in a rotating shallow-water model 
with dissipation acting on the smallest resolved scales. They found that, in the param- 
eter range examined (Rossby number - 0.01 - 0.1 and Froude number - 0.03 - O.l), 
there was little transfer of energy from the balanced modes to inertio-gravity waves. 
They found significant downscale transfer of energy among the inertio-gravity wave 
modes, however. Recent papers by Spa11 & McWilliams (1992) and Polvani et al. 
(1994) have presented further studies of the problem of decaying turbulence in the 
shallow-water model. 

Here we extend the work of FS through detailed analysis of numerical simulations 
of the equilibrium state of homogeneous turbulence in a forced-dissipative rotating 
shallow-water model. Part of the motivation for the present study is derived from 
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observations of the scale dependence of atmospheric motions. Observations of 
two-dimensional atmospheric energy spectra typically show two distinct power law 
regimes, one at large scales with slope roughly -3 (e.g. Boer & Shepherd 1983) 
and another shallower region at scales shorter than about 500 km (e.g. Nastrom & 
Gage 1985). The nature of the shallow ‘mesoscale’ spectral regime is controversial. 
Lilly (1983) regarded this feature of the spectrum as a consequence of a quasi-two- 
dimensional upscale energy cascade from small-scale convection, accounting for the 
roughly - k-5/3 behaviour seen in observations. By contrast, Gage & Nastrom (1986) 
speculated that the motions in the mesoscale regime may be largely inertia-gravity 
waves. If Gage & Nastrom are correct, then there may be no need to invoke 
significant small-scale forcing of atmospheric motions in order to account for the 
observed mesoscale regime. 

An understanding of the interaction of gravity waves and balanced two-dimensional 
turbulent motions is likely to be crucial for explaining the mesoscale regime of 
atmospheric flow. Here we will attempt a detailed exploration of these interactions 
within the simple context of statistically homogeneous flow in the shallow-water 
model. For the results to be of relevance for the atmosphere it is necessary to 
extend the parameter range of the flows examined beyond that considered by FS (in 
particular to flows with Rossby number of order unity). 

The outline of this paper is as follows. In $2 we present the basic equations and 
discuss the technique developed for separating balanced and free components in flows 
at finite Rossby number. Section 3 begins with a description of the numerical model 
used in the present simulations. Then the results of the decomposition into the two 
components are examined along with the basic features of the simulated equilibrium 
state. The details of the scale interactions in the equilibrium state are diagnosed in #4, 
and the implications for the parameterization of subgrid-scale motions in numerical 
models are discussed. Conclusions are given in $5. 

2. Decomposition of the potential-vortical and residual components 
Consider a plane flat-bottom shallow-water system in a doubly periodic square 

domain with an unperturbed depth H. The system is rotating about the vertical with 
a uniform angular velocity f /2  where f is the usual Coriolis parameter. Following 
Lorenz (1980), the governing equations of motion in the absence of forcing and 
dissipation can be written as 

a 
-V2W + J ( W ,  V 2 y )  + v . (V2yVx) + f v2x + (UV2WX + BV2yy) = 0,  
a t  

a 
t V 2 X  + Jk v2W) - v * (V2wVw) + V2(K + gh - f w  + ZiyY - Byx) = 0 ,  

ah 
- + J ( w ,  h)  + V . (hVx) + HV2x + (ah, + Bh,) = 0 ,  
a t  

au 

a5 
- + fzr+V2WXX = 0 ,  
a t  

--ffv-V2.WXy=0, a t  

with 

K = (VW * vw + vx . Vx)/2 + J ( W ,  x )  + (a2 + fv2)/2 

+ ( - W y  + V W X )  + ( U X X  + iTxy), 
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where y and x are the streamfunction and velocity potential, h is the surface height 
departure, and u and u are horizontal velocities. The overbar denotes the horizontal 
domain average. For completeness, we include the contributions from (as well as 
prognostic equations for) the domain-averaged velocities U and 5 which were ignored 
by Lorenz. For the parameter range of interest, however, the contribution of the 
mean velocity terms was found to be negligible, and these terms are dropped from 
the further development described here. The equation governing the linear potential 
vorticity ( q  = V2y - f h / H )  can be obtained by multiplying (2.3) by - f / H  and adding 
the result to (2.1): 

The linearized shallow-water system has eigenmodes belonging to two distinct 
branches : geostrophically balanced non-divergent zero-frequency motion and inertio- 
gravity waves with their familiar dispersion relation. FS decomposed their simulated 
flow fields into geostrophically balanced and inertio-gravity wave components. This 
approach worked quite well for their decaying turbulence simulations, since the flows 
were very weak. In the present study, we are interested in flows with larger Rossby and 
Froude numbers (appropriate for atmospheric conditions), and thus a more accurate 
decomposition scheme is developed. 

Our scheme is based on the use of the gradient-wind approximation for the 
balanced flow along with the assumption that the balanced motions contain all the 
linear potential vorticity of the system. This assumption is one of many possible 
that could be used to relate the divergent and rotational components of the balanced 
flow. This particular choice is motivated by the nice property that the part of the 
flow not in the balanced component will have zero linear potential vorticity (which is 
appropriate for linear inertio-gravity waves). It is ultimately justified a posteriori by 
the results presented below. 

We adopt the same terminology as FS and assume the full flow consists of a 
potential-vortical component (denoted by subscript v) and a residual component 
(denoted by subscript g): 

w = w v + z y g ,  

x = x v + x g ,  

h = h, + h, . 

The potential-vortical component satisfies the gradient-wind balance equation: 

gV2hv = f V2VY + 2J(wvx, vv,)  (2.11) 

and contains all the linear potential vorticity of the system: 

(2.12) 

where 2, = ( g H ) ' I 2 / f  is the Rossby radius of deformation. Here (2.11) has been 
used to substitute for h, in deriving (2.12). The gradient-wind balance equation is 
the approximation to the divergence equation (2.3) obtained by neglecting terms of 
O(R2) and higher in the Rossby number expansion. The Rossby number is defined as 
R = U / f  L where U and L are typical velocity and length scales. 
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To be consistent with the gradient-wind balance equation, the same-order o- 
equation is 

(2.13) 

Detailed derivations for (2.11) and (2.13) can be found in the literature (see e.g. Spa11 
& McWilliams 1992). Equation (2.12) can be used to invert y, from q diagnostically. 
Once y, is known, the corresponding h, and xv can be easily calculated by (2.11) 
and (2.13). The residual fields are then obtained by subtracting the potential-vortical 
component fields from the full fields. 

As a first step to formulating energy equations for the two components, we 
now derive prognostic equations for the individual variables of both components. 
Replacing q in (2.7) with a function of y, by (2.12), the prognostic equation for yv 
can be written as 

1 
(V2 - 3L,2)v2xv = -J(y,, V2yv).  f2 

where 

9;; = J (ww 4 )  + ( x v x 4 x  + xv,4y) + 4v2xv > (2.15) 

9;; = J(wg, 4) + (xg,4x + xgyqy) + 4v2xg Y (2.16) 

9;; = o  (2.17) 

are the nonlinear terms with subscripts indicating two interacting components and 
superscripts indicating the equation to which they belong. Note that since q = q,, 
the subscript v for q has been omitted. Equations (2.15)-(2.17) are obtained by 
first substituting (2.8) and (2.9) into (2.7) and then grouping all the nonlinear terms 
together according to the nature of their interacting components. Equation (2.17) 
states that interactions among modes of the residual component will not generate 
any potential-vortical component motion. 

The prognostic equations for x, and h, can then be derived by taking the time 
derivative of the o-equation (2.13) and the gradient-wind equation (2.1 1) respectively 
and by substituting dy,/at into the resulting equations using (2.14): 

1 a 
at fn: at 

axy = -v-2(V2 - Ao2)-l - J(yv, V2yv),  (2.18) 

(2.19) 

The interpretation of (2.14), (2.18), and (2.19) is complicated by the appearance of 
time-derivative terms on the right-hand sides. The contributions of these terms to the 
energy budgets were evaluated from the numerical simulations described below (see 
93.3), and were found to be negligible. For simplicity these time-dependent terms will 
be neglected in the further development in this section. 

Once the prognostic equations for the potential-vortical component are known, the 
approximate prognostic equations for the residual component can be easily derived 
by subtracting (2.14), (2.18), and (2.19) from (2.1)-(2.3) respectively: 
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axp = -V-2(9$v + + 9ig) - (gh, - fyg) ,  

at = ['.p:v + (f/g)(V2 - A;2)-19-:;] + [92, + (f/g)(V2 - n,',-'.a3 
+ [& + (f/g)(V2 - n;',-'9-;;] - HV2Xg. 

(2.21) 
at 

a h  

(2.22) 

Nonlinear terms involving interacting modes of the same components have been 
grouped together in the square brackets. Those interaction terms with superscripts of 
full fields are obtained in the same manner as for (2.15)-(2.17). Details are given in 
Appendix A. 

Finally, we derive the energy equations for the two components. The energy spectra 
are defined here as 

(2.23) 
A 1  1 
Ev = j H "  - 3 v y  + Tivx12 + IQVX + i v V l 2 )  + j"h2 9 

(2.24) 

where the caret denotes a Fourier space coefficient. In the divergent shallow-water 
system the true energy is [(h + H)(u2 + u2)  + gh2]/2. This is a cubic quantity, a fact 
which greatly complicates the analysis (see Warn 1986, for discussion). Following 
Warn (1986), our definition of energy is a quadratic approximation to the true cubic 
energy (replacing H + h with H ) .  For all the numerical experiments presented here, 
the relative differences between the domain-integrated true and approximate energy 
are less than 1%. 

The quadratic energy equations in spectral space are 

a& a 
at at __ = - [iH(I - 3 v y  + LA2 + I Q V X  + jivy12) + ;glitv12] 
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where a star denotes the complex conjugate. These equations are obtained by taking 
the following operations respectively: 

Energy transfers due to nonlinear interactions involving modes of the same compo- 
nents are grouped together in the square brackets. 

3. Numerical experiments and the equilibrium spectrum 

A spectral model was used to perform the numerical experiments. The following 
equations were integrated : 

3.1. The numerical model 

au 
at 
- + UU, + U U ~  - f~ + gh, = F, + D, , 

ah 
- + ( H  + h ) V .  6 + ii. V h  = Fh + Dh,  
at (3.3) 

where F and D terms are the forcing and dissipation. Compared with the vorticity 
and divergence equations, the basic momentum equations have fewer nonlinear 
calculations; thus it is more convenient and economical to integrate (3.1)-(3.3) than 

To remove aliasing in the spectral model, nonlinear multiplications are calculated 
on a transform grid in physical space of dimension (3N/2+2) x (3N/2+2) where N is 
the equivalent grid-point model resolution. An explicit leapfrog scheme is used for the 
time integration. A very weak Robert filter is also applied to remove computational 
modes. In agreement with the earlier shallow-water model study of Farge & Lacarra 
( 1  988) we found that stable integrations required a time-step considerably smaller 
than that indicated by the CFL criterion. 

Most experiments were performed at N = 256 (i.e. 128 x 128 wavenumbers) reso- 
lution. The model parameters are chosen to be roughly appropriate for atmospheric 
motions in midlatitudes. In particular, we chose: the domain size L = 1 5 . 6 ~ 1 0 ~  m, 
H = 100 m, g = 10 m s-*, and f = 0.4 x lop4 s-'. The magnitude of the forcing is such 
that the typical velocities in the fully developed flow are comparable to horizontal 
winds observed in the atmosphere (and hence are a significant fraction of the 31 m s-l 

linear gravity wave phase speed in the model). The time-step size is 180 s. Results 
will be discussed in terms of wavevectors and wavenumbers non-dimensionalized by 
the domain size. 

The model is forced at large scales by injecting random momentum and mass 
sources balanced so that they directly excite only the potential-vortical component. 
This is to represent the generation of large-scale atmospheric eddy motions (which 
is thought to occur largely though instability processes that are essentially quasi- 

(2.1)-(2.3). 
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geostrophic). Implementation of this forcing begins with the generation of a scale- 
selective, random Markovian streamfunction defined in spectral space as 

(3.4) Cn = &(l - a  ) e + aGn-1, 

where & is a wavenumber-dependent forcing amplitude (non-zero only for wavenum- 
bers with magnitude between 7 and 9), 0 is a random number varying from 0 to 7t for 
each two-dimensional wavevector. The subscript notation denotes that the nth version 
of the streamfunction is generated from the n - 1st. The factor a (< 1) is the correla- 
tion coefficient between successive versions. (This is the same functional form as that 
used by Maltrud & Vallis 1991, for their two-dimensional turbulence studies.) Next, 
the corresponding height and velocity potential forcing fields are calculated from the 
streamfunction using (2.1 1) and (2.13) respectively. These height and velocity fields 
are then used to determine the momentum and mass forcing applied to the governing 
equations (3.1)-(3.3). Here a = 0.5 is chosen and at every 10 time-steps (1800 s) a new 

is generated. Maltrud & Vallis (1991) found some sensitivity of their non-divergent 
model results to the choice of the time correlation of their forcing. The addition of 
the divergent flow in the present model raises the possibility of further sensitivity. 
While the forcing is designed to directly excite only balanced motions, decreasing a 
will produce more high-frequency unsteadiness in the flow which might be expected 
to enhance the transfer of energy into the residual component. In fact the results 
from the experiments reported here have been found to be not strongly sensitive to 
the value of a. As a final point concerning the forcing, note that the Rossby radius 
of deformation is about L/3, i.e. somewhat larger than the forcing scale. 

The dissipation consists of a linear relaxation and a V8 linear diffusion acting on 
both the velocity and height fields. The linear relaxation is applied only to modes 
with wavenumber less than 6. The large-scale linear drag has timescale of 4.32 x 106 s 
(50 days), and the coefficient for the diffusion is m8 s-l (resulting in a dissipation 
timescale of about 2 days for wavenumber 128). 

The model was integrated from rest. After about 200 days the secular increase in 
domain-integrated enstrophy and energy ceased. In the experiments reported here, 
the first 400 days of integration are discarded and the statistics are computed on 
the basis of 500 instantaneous model fields sampled during the next 100 days (unless 
otherwise noted). 

2 112 10 

3.2. Results of application of decomposition procedure 
The actual application of the decomposition procedure to the model output begins 
with the computation of the linear potential vorticity from the full instantaneous 
fields. Then the potential-vortical component streamfunction is obtained diagnosti- 
cally by inverting the linear potential vorticity from (2.12) using an iterative method. 
The iteration starts by ignoring the nonlinear term, thus the initial guess uses the 
pure geostrophic approximation. Then this geostrophically balanced field is used to 
approximate the nonlinear term. Treating the nonlinear term as known, the equation 
is then linear for the next guess streamfunction and can be easily inverted again. 
This process can be repeated until the convergence is reached. The potential-vortical 
height and velocity potential can then be calculated by straightforward inversion of 
(2.11) and (2.13). 

Figure 1 shows the result of a single iteration of the decomposition procedure 
(i.e. geostrophic balance). Displayed are the vorticity computed from the potential- 
vortical component ( a )  and the residual component (b) .  For clarity of presentation 
only a portion of the domain is shown. This is an instantaneous sample taken after 
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the spin-up period. The Rossby number (computed as the mean absolute value of 
relative vorticity divided by j) is about 0.45, and the root-mean-square velocity and 
surface height are about 8 m s-l and 9 m respectively (Froude number about 0.25). 
Inspection of figure 1 reveals regions of strong negative vorticity in the residual 
component that are highly correlated with locations of anticyclones in the potential- 
vortical component. Since the residual component does not contain any linear 
potential vorticity, its vorticity field is proportional to its height field (V2y, = f h , / H ) .  
These strong ‘lows’ in the residual component result from the potential-vortical 
component anticyclone highs being overestimated by the simple geostrophic balance. 
The same effect exists for cyclones : the geostrophic balance underestimates lows in 
cyclonic circulations resulting some strong ‘highs’ in the residual component. Figure 
2 shows the same vorticity fields, but after three iterations to approximate the full 
gradient-wind balance. The apparently unrealistic features in the residual component 
are greatly reduced. No noticeable improvement occurs with further iterations. There 
is no theory that predicts how fast this iterative method will converge, or if it must 
converge at all. From our test results, however, it seems three iterations are sufficient 
to effectively separate the two components. Thus we will employ three iterations in 
all calculations presented below. 

The effectiveness of the decomposition procedure is further analysed by compu- 
tation of the space-time spectrum of the potential-vortical and residual components 
of the flow. In this calculation (and in all other spectral calculations reported here) 
the two-dimensional wavenumber spectrum has been integrated along circles in the 
two-dimensional wavevector space to obtain the one-dimensional spectrum. Only the 
part of the spectrum for wavenumbers < N/2 is plotted. (Note that some of the 
calculations described here have been repeated with a ‘circular truncation’ in which 
the amplitudes for modes with wavenumber < N/2 are set to zero at each time-step. 
The results for the wavenumber range < N / 2  are not much affected if either the 
square or circular truncation is employed.) 

Figure 3 (a-c) shows contour plots of space-time spectra of the total energy, the 
potential-vortical component energy, and the residual component energy, based on 
five days of integration after the spin-up period in an experiment with the standard 
( N  = 256) model. During this particular 5 day segment the forcing and dissipation 
were set to zero, in order to closely approximate a free system. A time series 
consisting of 240 instantaneous samples at 10 time-step (30 minutes) intervals was 
used to calculate the spectra. Practical considerations limited the length of the time 
series that could be used to calculate the spectra. This time series is not long enough to 
capture very low-frequency motions, thus a data tapering window of split-cosine bell 
shape (with - 8% tapering) has been applied in the time domain. This is designed to 
suppress the artificial leakage of low-frequency modes to higher frequencies. However, 
as a side effect, the data tapering introduces spurious oscillations in the computed 
spectra (this accounts for the isolated maxima at low wavenumber that appear up the 
frequency axis in figure 3). Nevertheless, when compared with untapered spectra (not 
shown), the contamination by the leakage has been greatly reduced. For reference 
the heavy solid curve in panel (c) shows the inertio-gravity wave dispersion relation, 
w2 = f 2  + c2k2,  where w is the wave frequency and c = (gH)1/2. 

It is clear that the energy concentrated at  large scales and low frequencies in 
figure 3 (a) is largely associated with the potential-vortical component, while the 
energy concentrated along the linear inertio-gravity wave dispersion relation curve is 
mostly from the residual component. This indicates that the residual component does 
indeed behave like linear inertio-gravity waves. The energy in the residual component 
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FIGURE 1. Vorticity fields of the two components for the initial guess in the separation procedure. 
The labelling on the x- and y-axes refer to grid-points in the equivalent 256 x 256 physical space 
grid. (a )  The potential-vortical component with contour interval of 3.0 x s-I and (6) the 
residual component with contour interval of 1.6 x s-'. Negative values are shaded. 
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FIGURE 2. As in figure 1, but after three iterations. 

is spread in a region around the linear dispersion relation, of course (figure 3c) .  This 
is presumably due to Doppler shifting effects. The two dashed curves plotted are the 
frequency shifting limits obtained using the root-mean-square velocity of 8 m s-l. At 
each wavenumber, the spectral energy density drops about a decade from the peak 
to the shifting limits. There is some weak concentration of potential-vortical energy 
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FIGURE 3. Space-time energy spectra (a) for the total energy, (b)  for the potential-vortical component 
energy, and ( c )  for the residual component. The contours are base-10 logarithmic values and zero 
corresponds to 10'' m3 s-'. In (c) ,  the solid curve is the dispersion relation for linear inertio-gravity 
waves, while the two dashed curves represent the Doppler shifting limits. See text for details. 

Wavenumber 

along the inertio-gravity dispersion curve (figure 3 b). This is presumably a measure of 
the inaccuracy in the present decomposition scheme. It is very encouraging that the 
energy density in this part of the potential-vortical component spectrum is about 3 to 
4 orders of magnitude smaller than that of the residual component in same regions. 

The decomposition scheme proposed here is apparently quite effective in separating 
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FIGURE 4. Statistical equilibrium energy spectra. Plotted for reference in the upper right corner in 
this and subsequent plots are two straight lines with slopes of -3 (solid) and -5/3 (dashed). 

the full flow fields into a slowly varying dynamically balanced component and a 
residual component that has properties very similar to linear inertio-gravity waves. It 
is striking that this works so well even at fairly high Rossby and Froude numbers. 
Henceforth, the residual field that emerges from the decomposition will be referred 
to simply as the inertio-gravity wave component. 

3.3. Equilibrium spectra 
Now we examine the equilibrium spectrum of the shallow-water model in more detail. 
Figure 4 shows energy spectra of the total field, the potential-vortical component, 
and the inertio-gravity wave component for the standard model integration. For 
k < 10, the total energy is mainly in the potential-vortical component and peaks at a 
wavenumber slightly below the forcing range (7-9). The drop in energy at very small 
wavenumbers presumably is a consequence of the linear relaxation applied at these 
scales. For k > 10, the potential-vortical component energy spectrum approximates a 
power law, but with a slight shallowing of the slope at higher wavenumbers. In order 
to characterize this more precisely, we performed a least-squares fit to the spectrum 
in the subjectively chosen regions 10 < k < 30 and 30 < k < 128. For 10 < k < 30 
the spectrum behaves as roughly - k-3.s, while for 30 < k < 128 it approximates - k-3.3. The inertio-gravity wave component spectrum peaks at wavenumber - 8 
and it clearly is not close to any simple power law. Overall, it is shallower than 
the potential-vortical component spectrum (except at the low-wavenumber end), and 
(for this particular experiment) it eventually crosses the potential-vortical spectrum 
at wavenumber - 61. 

High-resolution numerical simulations of two-dimensional turbulence typically pro- 
duce spectra with slopes steeper than -3 in the enstrophy inertial range (e.g. Fornberg 
1977; Basdevant et al. 1981; McWilliams 1984), generally a symptom that the flow 
includes long-lived spatially coherent structures. One possible measure of the degree 
of this intermittency is the vorticity kurtosis (c4/c2 ) which would have a value of 
3 for a Gaussian random field (e.g. Maltrud & Vallis 1991). For this shallow-water 
model experiment, the vorticity kurtosis (calculated only with the potential-vortical 
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FIGURE 5. Energy spectra of the quasi-geostrophic and shallow-water models when run with identical 
forcing and dissipation. The quasi-geostrophic spectrum has been shifted downward by one decade. 
Only the energy in the potential-vortical component has been considered in the shallow-water model 
result. 

component vorticity) during the statistical equilibrium stage is about 6, demonstrating 
at least some degree of coherent structure in the flow. 

As part of the present project, a purely quasi-geostrophic one-layer numerical 
spectral model was also constructed (see Yuan 1993, for details). The parameters 
and forcing for this model were taken to be as similar as possible to that for the 
full primitive equation shallow-water model. Figure 5 compares the energy spectrum 
for this quasi-geostrophic model with that of the potential-vortical component in the 
shallow-water model (identical to that shown in figure 4). At wavenumbers greater 
than those of the forcing (i.e. k > 9) the spectra are almost identical (differences at 
very low wavenumber presumably reflect sampling errors). The vorticity kurtosis for 
the quasi-geostrophic model experiment is about 6.5, only slightly larger than that 
of the shallow-water model. Thus there is little indication of strong impact of the 
inertio-gravity waves on the dynamics of the balanced component of the flow (even 
at the reasonably large Rossby number in this simulation). 

Energy transfer rates due to nonlinear interactions were explicitly calculated in 
order to examine the maintenanc: of the staiistical equilibrium. Dividing the energy 
equations (2.25) and (2.26) by Ev(k) and Eg(k) respectively, terms on the right- 
hand sides of the resulting equations are the transfer rates in the two-dimensional 
spectral space. These two-dimensional transfer rates are then averaged along circular 
wavenumber bands to obtain one-dimensional transfer rates. Figure 6 shows the 
results (averaged over the same 100 day period as the power spectra discussed 
earlier). The balance for the potential-vortical component is relatively simple (figure 
6a).  Forcing puts energy into the system directly in the forcing wavenumber range 
(7 < k < 9). This injected energy is transferred to both lower and higher wavenumbers 
by nonlinear interactions within potential-vortical modes (vv interactions), and then is 
removed by dissipation. Nonlinear interactions between modes of the two components 
(vg interactions) make virtually no contribution to the transfer of the potential-vortical 
component energy. 

The inertio-gravity waves are not directly forced (figure 6b).  For k > 10 energy 
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FIGURE 6. The energy transfer rates (a) for the potential-vortical component, and ( b )  for the 
inertio-gravity component. 

is input to the inertio-gravity modes by interactions between modes of the two 
components (vg interactions). Nonlinear interactions among the inertio-gravity waves 
(gg interactions) transfer the converted energy to the dissipation ranges at large and 
small wavenumbers (mostly to the high wavenumbers). The interactions between 
potential-vortical modes (vv interactions) also convert some energy to the inertio- 
gravity waves, but mostly in the low-wavenumber range. 

The sensitivity of the equilibrium spectra to the forcing amplitude and rotation rate 
parameters have been examined. Shown in figure 7 are the equilibrium energy spectra 
for two experiments, one with all parameters the same as the standard case but with 
half the forcing amplitude, and one with all parameters the same as the standard 
case but with half the rotation rate. The Rossby number for the first experiment is 
0.26, while that for the second is 0.8. The shape of the potential-vortical spectrum 
in both of these experiments is virtually the same, but the inertio-gravity component 
spectrum is clearly greatly affected by varying these two parameters. When examined 
in conjunction with figure 5, the results in figure 7 show that the residual component 
spectrum becomes shallower as the Rossby number increases. Further sensitivity 
experiments were carried out by varying these two parameters (not shown). The 
inertio-gravity energy is found to be less than that of the potential-vortical mode at 
all resolved wavenumbers (i.e. up to k = 128) whenever the Rossby number is less 
than 0.2. 
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k k 
FIGURE 7. Energy spectra for an experiment with (a) half the forcing, and ( b )  half the rotation rate 

of the standard experiment (results plotted in figure 4). 

4. Characteristics of the scale interactions: implications for subgrid-scale 
parameterization 

4.1. Spectral decomposition of vv interactions and g g  interactions 

The energy transfer rates defined in the energy equations of (2.25) and (2.26) are the 
sums of contributions of all possible triad interactions. Each triad consists of two 
components in the nonlinear interaction function and one component of the velocity 
or height field. Here we determine the dominant triads contributing to the energy 
balance at any wavenumber. For example, in spectral space the vv interaction of 
(2.15) can be expressed as 

or equivalently as 

= CfU(4 
I 

+ ( ? " y V )  + G v x ( l ) ) 4 y ( k  - I )  + ( i v x x ( I )  + i v y y ( l ) ) 4 ( k  - 4 > (4.2) 

where k and I are wavevectors. Then f4(1) represents the contributions to at 
wavevector k from the the interaction of a field related to potential vorticity at 
wavevector I and a field related to velocity at wavevector ( k  - I ) .  Similarly, f U ( Z )  
represents the contributions from the field related to velocity at I interacting with 
the field related to potential vorticity at ( k  - I ) .  The interpretation of f ,  and fU is 
complicated since the potential vorticity itself is a function of the velocity. For any 
particular wavevector of interest (k ) ,  terms formed by f , (Z) or f J Z )  multiplied by 
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-$t,(k) + t i x ( k )  are proportional to the potential-vortical component energy transfer 
rates (see (2.25)). 

This technique is applied to analyse the vv interaction in the potential-vortical 
component. It may be more meaningful to express this nonlinear interaction in terms 
of enstrophy transfer rates. The enstrophy equation in spectral space can be obtained 
easily by rewriting (2.14) in the spectral space and multiplying both sides of the 
resulting equation with (k2 + A;2)-'ij*(k)/1q(k)12. Thus fq(f) and fu(f) multiplied by 
(k2 + A;*)-'4*(k)/1q(k)l2 are the two-dimensional enstrophy transfer rates. Note that 
for any wavevector of interest ( k ) ,  this multiplier is a constant to fq(f) or fu(f) for 
all wavevectors 1. In order to obtain better statistics, such decomposition calculations 
are repeated for all modes with wavevectors within a narrow circular wavenumber 
band and the results are averaged. 

Figure 8 shows the decomposition of vv interaction in transferring enstrophy of 
modes within two arbitrarily chosen bands in the high-wavenumber range, 38 d 
k < 40 and 58 d k < 60. These calculations were performed on results from an 
N = 160 model resolution run with parameters similar to the standard experiment 
described in $3 (although with the diffusion coefficient increased). The results in figure 
8 represent the average of 200 instantaneous samples after the spin-up period. It is 
clear from this figure that the main contributions to enstrophy transfer come from 
interactions of a few modes of similar scales (dashed curves) with quite large-scale 
modes (solid curves). Through this interaction, modes in each band gain enstrophy 
from wavevectors with about 8 lower adjacent wavenumber modes and lose enstrophy 
to about 8 higher adjacent wavenumber modes. From the limited analysis conducted 
here the spread of the interaction in spectral space (measured by the width of the 
peaks and troughs in the dashed curves in figure 8) appears to be independent of the 
wavenumber considered. At this point we have no clear idea of what determines the 
degree of this spread. 

This result is broadly consistent with the notion of a forward (downscale) enstrophy 
cascade, in that the positive enstrophy flux into any wavenumber depends only on 
interactions with smaller wavenumber modes. The details of the scale dependence 
of the interactions in the enstrophy casacade intertial range have been debated by 
earlier workers (e.g. Kraichnan 1975; Pouquet et al. 1975; Basdevant et al. 1981; 
Hoyer & Sadourney 1982). The most intuitive picture of the physics of an inertial 
range cascade would suggest that the significant interactions should involve only 
spectral components of very similar scale (i.e. the triad wavevectors should form a 
nearly equilateral triangle). This may be the case for the two-dimensional reverse 
energy cascade (e.g. Hoyer & Sadourney 1982). On the other hand, given the very 
steep spectrum in the forward entrophy cascade range it may be reasonable to expect 
the dominant nonlinear transfers to involve the large scales, and this has been the 
basis of earlier phenomenological models of the turbulence within this regime (e.g. 
Basdevant, Lesieur & Sadourny 1978; Hoyer & Sadourny 1982). Basdevant et al. 
(1981) argued that this 'non-locar interaction should dominate in the case of purely 
nonintermittant turbulence, but that any intermittant behaviour restores the spectral 
locality of the interactions. 

Recently Ohkitani & Kida (1992) and Maltrud & Vallis (1993) have used direct nu- 
merical simulations with the purely non-divergent system to investigate this problem. 
They arrive at essentially the same conlcusion as resulted from the present analysis of 
the shallow-water model (e.g. figure 2 of Maltrud & Vallis 1993 is directly comparable 
to the present figure 8). 

The present results are a confirmation of the spectral 'non-locality' of the inter- 
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actions in the forward cascade, even in the presence of some intermittency. The 
dominant triads in the enstrophy cascade are very elongated. In physical space then, 
the forward turbulent enstrophy cascade in the potential-vortical component of the 
present shallow-water model is apparently largely a consequence of distortion of local 
potential vorticity by the large-scale flow field. 

We can use the same approach to decompose all the gg interactions in the inertio- 
gravity wave energy equation (2.26). Since there are many terms involved in the 
interaction functions, the two interacting components are arbitrarily assigned as fJZ) 
and fb(Z) (see Appendix B). Figure 9 shows the transfer rates calculated from fa(Z) 
and fb(Z) for gg interactions contributing to the 38 d k d 40 and 58 d k d 60 
bands. The extremely broadband nature of the spectral energy transfers is clear. The 
inertio-gravity wave modes in each band gain energy from all modes of larger scales 
and lose to all modes of smaller scales through these gg interactions. 

4.2. Sensitivity to model resolution 

The difference in the nature of vv and gg interactions is reflected in the sensitivity of 
the potential-vortical and inertio-gravity component spectra to the model resolution. 
This is demonstrated in figure 10 where the equilibrium spectra obtained with three 
model resolutions ( N  = 160, 256, and 432) are plotted. Forcing parameters are 
selected so that the system is equally (in the statistical sense) forced in each case. The 
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FIGURE 9. Decomposition of gg interaction for the inertio-gravity component energy transfer. The 
solid and dashed curves are for fa and f b  respectively. (a )  38 < k < 40, and ( b )  58 < k d 60. 

V8 diffusion coefficient is also adjusted according to 

where k,,, = k N p + ,  is the highest resolved wavenumber. For non-divergent models 
this is the obvious choice for scaling the dissipation, since it ensures that the timescale 
for enstrophy dissipation at the smallest resolved scale will be independent of res- 
olution. The present shallow-water model the results in figure 10(a) show that this 
scaling of dissipation does indeed produce an inertial range in the potential-vortical 
component that is insensitive to the model resolution. The spectrum simply extends to 
higher-wavenumber ranges with the same slope when model resolution increases. By 
contrast, the inertio-gravity wave component spectrum (figure 10 b)  is highly sensitive 
to the model resolution. The lower the model resolution, the shallower is the slope 
of the inertio-gravity wave energy spectrum (at least for wavenumbers greater than 
about 10). At the low-wavenumber end the effect of resolution is apparently even 
more complicated, with the minimum values actually occurring at the intermediate 
resolution. 

The basic features of these results may be understood in the light of the contrasting 
nature of the vv and gg nonlinear interactions. Since only a limited number of modes 
are involved in cascading the enstrophy, any mode in the inertial range should not 
significantly feel the effects of modes with significantly smaller scales (figure 9). As 
long as the subgrid-scale parameterization scheme (V8 diffusion) provides the same 
rate of enstrophy dissipation at the high-wavenumber end, the effect of subgrid-scale 
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FIGURE 10. Energy spectra for shallow-water model integrations at three spatial resolutions, (a) for 

the potential-vortical component and (b)  for the residual component. 

potential-vortical component modes is apparently well parameterized. In contrast, 
the gg interactions transfer significant energy from any wavenumber to modes of 
all smaller scales. When the model resolution is reduced, fewer smaller-scale modes 
are available as a sink. The V8 diffusion dissipates only a very limited number 
of highest-wavenumber modes : lower-wavenumber modes cannot feel subgrid-scale 
inertio-gravity wave effects through this parameterization. 

The result in figure 10(b) shows the difficulty in formulating an acceptable subgrid- 
scale parameterization even for the simple case of homogeneous turbulence in a 
shallow-water model. It seems likely that any formulation that can produce inertio- 
gravity component spectra independent of resolution must depend nonlinearly on 
the flow. The implications of this conclusion may be significant for global three- 
dimensional atmospheric simulation models, particularly as the resolution increases 
to the point where a portion of the mesoscale regime can be represented (e.g. Strahan 
& Mahlman 1994). 

4.3. Spectral decomposition of vg interaction and the source of inertio-gravity waves 
The results in figure 6 ( b )  show that inertio-gravity waves of all scales gain energy 
though vg interactions. In this section we show the results of a scale decomposition of 
the vg interactions. All terms involved in vg interactions in the energy equation (2.26) 
are represented as the sum of triads in a manner analogous to that in (4.1). The two 
interacting components are assigned such that fv(Z) and fg(Z) depend on the potential- 
vortical component fields and inertio-gravity component fields, respectively. The 
algebra involved in deriving the expressions for these two functions is straightforward, 
but very lengthy (see Yuan 1993, for details). The results are shown in figure 11 
for the same two wavenumber bands used in the earlier discussion of vv and gg 
interactions. It is clear that for both wavenumber bands, the energy transfer results 
from the interactions with the large-scale potential-vortical component modes. In that 
sense, we can regard the inertio-gravity waves as being generated by the instability 
of the large-scale potential-vortical component modes. Small-scale inertio-gravity 
modes are apparently nearly decoupled from the small-scale potential-vortical modes. 
The fact that interactions are dominated by one one small-wavenumber potential- 
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energy 

vortical mode and two large-wavenumber inertio-gravity modes is reasonable, since 
the small frequency difference between the inertio-gravity modes could be close to 
the (presumably very small) frequency for the potential-vortical mode. 

To investigate further the generation of gravity waves, we have also calculated 
the divergence of inertio-gravity wave energy fluxes, V . (hgag), in physical space. In 
figure 12 this divergence is plotted together with the potential-vortical component 
vorticity field. These results are for a 5 day average of the N = 256 model resolu- 
tion standard experiment. In these figures, the absolute value of potential-vortical 
component vorticity is plotted since we do not distinguish cyclonic and anticyclonic 
motions for this purpose. Only the positive values of inertio-gravity wave energy 
flux divergence (related to the generation of energy) are shown. In figure 12(a), the 
energy fluxes are calculated from fields containing all wavenumbers, while in figure 
12 (b) truncated fields consisting of an arbitrarily chosen spectral wavenumber band 
75 d k d 80 are used. Both plots were obtained by averaging 350 samples over 
2400 time-steps of integration during the statistical equilibrium state. During that 
relatively short period, the large-scale potential-vortical component vortices did not 
move significantly (as is evident from the well-defined isolated vortices seen even in 
the time mean shown in figure 12). 

Both plots show that regions of strong divergence of inertio-gravity wave energy 
flux appear to be located in proximity to the large-scale potential-vortical component 
vortices. The spatial correlation coefficient between these two fields is about 0.47 and 
0.60 for figures 12(a) and 12(b) respectively. This further indicates that the large- 
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scale potential-vortical component modes are indeed the direct sources of inertio- 
gravity wave energy. It is interesting that the regions of wave flux divergence are 
generally found around the edges of the large vortices. Numerous simulations of 
two-dimensional flow have shown a tendency for the fluid (and the vorticity field 
itself) near the edge of vortices to be ejected out in filaments that become increasingly 
stretched out with time. Perhaps in a divergent system it is in such structures that 
the gradient-wind balance breaks down, leading to the generation of gravity waves. 
Clearly more work needs to be done to confirm this speculation, but it seems likely 
that the physical space correlation seen in figure 12 contains valuable information on 
the nature of the instability of balanced motion in fully developed turbulent flows. 

5. Conclusions 
In this paper we have investigated the statistical equilibrium dynamics in a forced- 

dissipative f-plane shallow-water system. We have considered the meteorologically 
interesting parameter range with both Rossby and Froude numbers - 0.1 - 1. The 
detailed dynamics has been analysed by decomposition of the full flow field into a 
dynamically balanced potential-vortical component and a residual component. The 
nonlinear decomposition scheme employed was shown to effectively separate the full 
flow field into slowly evolving motions with properties very similar to those found 
in the familiar non-divergent system, and higher-frequency motions that behave very 
much as linear inertio-gravity waves. 

The behaviour of the potential-vortical component in the present experiments is 
strikingly similar to that in purely non-divergent models. In particular, the equilibrium 
energy spectrum of the potential-vortical component has a logarithmic slope slightly 
steeper than -3 between the forcing and dissipation ranges. This slope was found to be 
rather insensitive to the forcing amplitude and rotation rate. Very similar flow statistics 
were obtained with a quasi-geostrophic shallow-water model run with comparable 
forcing and dissipation. Detailed analysis of the potential-vortical component showed 
that the forward (i.e. downscale) enstrophy cascade into any wavenumber is dominated 
by elongated triads which involve very large-scale modes. This is in agreement with 
earlier theoretical predictions based on phenomenological turbulence models and with 
the recent direct calculations of Maltrud & Vallis (1993), but it does contradict the 
simplest view of the inertial range, i.e. that the cascade into any wavenumber should 
depend only on components of the flow with similar scales. 

Even when not directly forced, a substantial amount of inertio-gravity wave energy 
can be generated in the system. When the Rossby number exceeds about 0.2, the slope 
of the inertio-gravity wave spectrum is significantly shallower than that of the balanced 
motions, so that at high wavenumbers the total energy spectrum is dominated by 
the inertio-gravity wave component. This behaviour has obvious parallels with the 
mesoscale spectral regime observed in the atmosphere. It is striking that when 
parameters roughly appropriate for midlatitude atmospheric flow are employed, the 
break between the kP3  and shallower regimes in the model occurs at wavelengths 
of a few hundred km, i.e. near the beginning of the mesoscale regime in typical 
observations. The present results thus demonstrate the possibility of generating a 
mesoscale regime dominated by gravity waves without invoking direct forcing of the 
flow at small scales. 

No universal shape of the inertio-gravity wave equilibrium spectrum was obtained. 
Rather the spectrum was found to be highly sensitive to both the forcing amplitude 
and rotation rate. 
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In equilibrium, inertio-gravity waves at large scales were shown to gain energy 
through interactions of inertio-gravity waves with large-scale potential-vortical com- 
ponent modes. This energy is then transferred to dissipation ranges by interactions 
among inertio-gravity waves themselves. The nonlinear interactions among inertio- 
gravity waves were found to be extremely broadband in spectral space, in contrast to 
the interactions among potential-vortical modes. This difference in the nature of the 
nonlinear interactions is reflected in the behaviour of the equilibrium spectrum as a 
function of model resolution. As long as the dissipation timescale for the smallest 
resolved waves is kept constant, the potential-vortical component spectrum was found 
to be virtually independent of resolution. The inertio-gravity wave energy spectrum, 
by contrast, was strongly dependent on resolution, suggesting that the simple Vs linear 
diffusion employed here is not an appropriate subgrid-scale closure for a divergent 
shallow-water model. This result emphasizes the difficulty in formulating adequate 
closure schemes for meteorological models that include explicit representation of the 
motions in the mesoscale regime. 

We would like to thank Jeffrey Anderson, Kirk Bryan, Isaac Held, Vitaly Larichev, 
Jerry Mahlman, Geoffrey Vallis, Tom Warn, Gareth Williams and an anonymous 
reviewer for helpful discussions and comments. 

Appendix A. Definition of nonlinear interaction terms in the full field 
equations 

Using (2.8)-(2.10), (2.1)-(2.3) can be rewritten as 

where 
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(A 10) 

-ag = -J(Wv, hg) - J ( W g ,  h) - V * (hgVX,) - V * (h,Vx,) - (ah, + V h y ) ,  (A 11) 

(A 12) 

H 4, = -J(wv, h v )  - v (hVVX,) - -(V2 - ;1,2)-1J(yv, V2yv),  

-@;g = -J(wg, hg) - v - (hgVX,). 

f 2: 

The subscripts and superscripts have the same meanings as in (2.15)-(2.17). 

Appendix B. Detailed decomposition of gg interactions 

terms of gg interaction in (2.26) are included: 
The energy transfer related to fa ( l )  is assigned as follows where all the nonlinear 
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